Penerapan Metode Average Gain, Threshold Pruning dan Cost Complexity Pruning Untuk Split Atribut Pada Algoritma C4.5
Abstract
Â
Keyword: Decision Tree, C4.5, split attribute, pruning, over-fitting, gain, average gain.
Full Text:
PDFReferences
Abellán, J. (2013). Ensembles of decision trees based on imprecise probabilities and uncertainty measures, 14, 423–430.
C. Sammut, G. W. (2011). Encyclopedia of Machine Learning. (C. Sammut & G. I. Webb, Eds.). Boston, MA: Springer US. doi:10.1007/978-0-387-30164-8
Duchessi, P., & LaurÃa, E. J. M. (2013). Decision tree models for profiling ski resorts’ promotional and advertising strategies and the impact on sales. Expert Systems with Applications, 40(15), 5822–5829. doi:10.1016/j.eswa.2013.05.017
Gorunescu, F. (2011). Data Mining Concepts, Models and Techniques. (Springer, Ed.) (12th ed., Vol. 12). Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-642-19721-5
Han, Jiawei; Kamber, Micheline; Pei, J. (2012). Data Mining Concepts and Techniques. Morgan Kaufmann (Third Edit., Vol. 40, p. 9823). Morgan Kaufmann Publishers. doi:10.1002/1521-3773(20010316)40:6<9823::AID-ANIE9823>3.3.CO;2-C
Larose, D. T. (2005). Discovering Knowledge in Data. United States of America: John Wiley & Sons, Inc.
Larose, D. T. (2006). Data Mining Methods And Models. New Jersey: A John Wiley & Sons, Inc Publication.
Mantas, C. J., & Abellán, J. (2014). Credal-C4.5: Decision tree based on imprecise probabilities to classify noisy data. Expert Systems with Applications, 41(10), 4625–4637. doi:10.1016/j.eswa.2014.01.017
Otero, F. E. B., Freitas, A. A., & Johnson, C. G. (2012). Inducing decision trees with an ant colony optimization algorithm. Applied Soft Computing, 12(11), 3615–3626. doi:10.1016/j.asoc.2012.05.028
Quinlan, J. R. (1986). Induction of Decision Trees. Machine Learning, 81–106.
Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. The Morgan Kaufmann Publishers.
Rokach, L., & Maimon, O. (2005). Decision Tree. Data Mining and Knowledge Discovery Handbook, pp 165–192. doi:10.1007/978-0-387-09823-4_9
Sahin, Y., Bulkan, S., & Duman, E. (2013). A cost-sensitive decision tree approach for fraud detection. Expert Systems with Applications, 40(15), 5916–5923. doi:10.1016/j.eswa.2013.05.021
Setsirichok, D., Piroonratana, T., Wongseree, W., Usavanarong, T., Paulkhaolarn, N., Kanjanakorn, C., … Chaiyaratana, N. (2012). Classification of complete blood count and haemoglobin typing data by a C4.5 decision tree, a naïve Bayes classifier and a multilayer perceptron for thalassaemia screening. Biomedical Signal Processing and Control, 7(2), 202–212. doi:10.1016/j.bspc.2011.03.007
T Warren Liao, E. T. (2007). Recent Advances in Data Mining of Enterprise Data : Algorithms and Applications (Vol.6 ed.). World Scientific Publishing Co.
Ture, M., Tokatli, F., & Kurt, I. (2009). Using Kaplan–Meier analysis together with decision tree methods (C&RT, CHAID, QUEST, C4.5 and ID3) in determining recurrence-free survival of breast cancer patients. Expert Systems with Applications, 36(2), 2017–2026. doi:10.1016/j.eswa.2007.12.002
Wang, T., Qin, Z., Jin, Z., & Zhang, S. (2010). Handling over-fitting in test cost-sensitive decision tree learning by feature selection, smoothing and pruning. Journal of Systems and Software, 83(7), 1137–1147. doi:10.1016/j.jss.2010.01.002
Wang, T., Qin, Z., Zhang, S., & Zhang, C. (2012). Cost-sensitive classification with inadequate labeled data, 37, 508–516. doi:10.1016/j.is.2011.10.009
Zhang, S. (2012). Decision tree classifiers sensitive to heterogeneous costs. Journal of Systems and Software, 85(4), 771–779. doi:10.1016/j.jss.2011.10.007
Refbacks
- There are currently no refbacks.
Journal of Intelligent Systems(JIS, ISSN 2356-3982) Copyright © 2020IlmuKomputer.Com. All rights reserved. |